B3	0.4443 (3)	0.8737 (5)	0.2746 (4)	0.023 (2)
B4	0.4103 (3)	0.7869 (6)	0.3936 (4)	0.025 (2)
B5	0.4443 (4)	0.9014 (6)	0.5005 (5)	0.032 (2)
B6	0.4097 (3)	0.9873 (6)	0.3817 (4)	0.027 (2)
B 7	1/2	1.0415 (7)	0.3107 (7)	0.022 (2)
B8	1/2	1.0593 (9)	0.4470 (6)	0.030 (3)
C9	0.4092 (3)	0.4908 (5)	0.2157 (3)	0.022 (1)
C10	0.3533 (3)	0.3806 (5)	0.2525 (4)	0.028 (1)
C11	0.2822 (3)	0.3428 (6)	0.1975 (4)	0.035 (2)
C12	0.2659 (3)	0.4129 (6)	0.1033 (4)	0.034 (2)
C13	0.3206 (3)	0.5208 (6)	0.0640 (4)	0.036 (2)
C14	0.3932 (3)	0.5586 (5)	0.1198 (4)	0.026 (1)

† Fixed to define origin.

Table 2. Selected geometric parameters (Å, °)

PC1 PC9 C1C2 C1B3	1.871 (6) 1.828 (4) 1.666 (9) 1.732 (7)	C1B4 C2B4 C2B5	1.729 (6) 1.714 (6) 1.705 (8)
C1—P—C9 C9—P—C9 ⁱ P—C1—C2 P—C1—B3	104.7 (2) 105.6 (2) 108.5 (4) 129.7 (3)	PC1B4 PC9C10 PC9C14	113.6 (3) 113.6 (3) 127.9 (3)
C9—P—C1—C2 C9—P—C1—B3	124.6 (1) -13.3 (4)	C9—P—C1—B4	59.4 (4)

Symmetry code: (i) 1 - x, y, z.

Non-H atoms were refined with anisotropic displacement parameters and H atoms of the carborane cage with fixed isotropic displacement parameters. H atoms of the phenyl ring were placed at calculated positions (C—H = 0.95 Å and $U_{\rm H}$ equal to $U_{\rm eq}$ of carrying atom) and not refined.

Data collection and cell refinement: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1993a). Data reduction: TEXSAN (Molecular Structure Corporation, 1993b). Structure solution: SHELXS86 (Sheldrick, 1985). Structure refinement: Xtal3.2 (Hall, Flack & Stewart, 1992). Molecular graphics: ORTEPII (Johnson, 1976) in Xtal3.2. Preparation of material for publication: ATABLE and BONDLA in Xtal3.2.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: AB1245). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Hall, S. R., Flack, H. D. & Stewart, J. M. (1992). Editors. Xtal3.2 Reference Manual. Univs. of Western Australia, Australia, Geneva, Switzerland, and Maryland, USA.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Kivekäs, R., Romerosa, A. & Viñas, C. (1994). Acta Cryst. C50, 638– 640.
- Kivekäs, R., Sillanpää, R., Teixidor, F., Viñas, C. & Nuñez, R. (1994). Acta Cryst. C50, 2027–2030.
- Kivekäs, R., Sillanpää, R., Teixidor, F., Viñas, C., Nuñez, R. & Abad, M. (1995). Acta Cryst. C51, 1864–1868.
- Molecular Structure Corporation (1993a). MCS/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Molecular Structure Corporation (1993b). TEXSAN. Single Crystal Structure Analysis Software. Version 1.6. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. Univ. of Göttingen, Germany.

©1995 International Union of Crystallography Printed in Great Britain – all rights reserved Šubrtová, C., Línek, A. & Hašek, J. (1980). Acta Cryst. B36, 858-861.
 Teixidor, F., Viñas, C., Rius, J., Miravitlles, C. & Casabó, J. (1990).
 Inorg. Chem. 29, 149-152.

Acta Cryst. (1995). C51, 1870–1875

cis-(Diethyldithiocarbamato)diiodo-(phenyl)tellurium(IV), PhTe(S₂CNEt₂)I₂, and its Methoxy-Substituted Mixed Br/I Analogue cis-Bis(0.4-bromo/0.6-iodo)-(diethyldithiocarbamato)(4-methoxyphenyl)tellurium(IV), p-MeOC₆H₄Te-(S₂CNEt₂)(Br_{0.4}I_{0.6})₂

STEINAR HUSEBYE

Department of Chemistry, University of Bergen, Allegaten 41, N-5007 Bergen, Norway

STEFFEN KUDIS

Department of Chemistry, University of Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany

SERGEY V. LINDEMAN*

Institute of Organoelement Compounds, 28 Vavilov Street, Moscow 117813, Russia

PETER STRAUCH

Department of Chemistry, University of Leipzig, Talstrasse 35, D04103 Leipzig, Germany

(Received 15 December 1994; accepted 23 March 1995)

Abstract

The Te^{IV} complexes PhTe(S₂CNEt₂)I₂, (1), and *p*-MeOC₆H₄Te(S₂CNEt₂)(Br_{0.4}/I_{0.6})₂, (2), have been synthesized by reacting PhTeI₃ with NaS₂CNEt₂, and *p*-MeOC₆H₄Te(S₂CNEt₂)₂I with Br₂, respectively. In (2), both I atoms are partially replaced by Br atoms in a 3:2 ratio. The structures display distorted octahedral Te coordination with two symmetrically coordinated S atoms [Te—S 2.550 (2)–2.569 (2) Å in three independent molecules of (1) and 2.523 (1) and 2.535 (1) Å in (2)] and with two *cis*-disposed halogen atoms [Te—I 2.941 (1)–2.986 (1) Å in (1) and 3.003 (4) and 3.049 (3) Å in (2); Te—Br 2.962 (8) and 2.967 (8) Å in (2)] in equatorial positions. The aryl group is axial in both complexes [Te—C 2.137 (6)–2.146 (6) and 2.123 (5) Å in (1) and (2), respectively] and the second axial posi-

tion is occupied by a halogen atom of a neighbouring molecule [Te···I 3.898 (1)–4.233 (1) Å in (1); Te···I 3.872 (3) Å and Te···Br 3.676 (6) Å in (2); *trans* angles C—Te···I(Br) 153.4 (2)–177.7 (2)°] so that the molecules are joined into (quasi)centrosymmetric pairs by these secondary interactions.

Comment

The structures of three symmetrically independent molecules of (1) and the molecule of (2) are very similar. In all cases, the Te atom has a distorted octahedral (tetragonal bipyramidal) environment with the symmetrically coordinated bidentate S,S-chelate dithiocarbamate ligand and two cis-disposed halogen atoms in its equatorial plane. An aryl group is situated in one axial position (Figs. 1 and 2). The second axial site is weakly coordinated by a halogen atom of a neighbouring complex. It is interesting that the manner of molecular association is the same both in the two independent dimers of (1)(the first one is quasi-centrosymmetrical, and the second one is derived by a crystallographic centre of symmetry) and in the centrosymmetric dimer of (2) (Figs. 3 and 4). The comparative weakness of these additional interactions is manifested by their dependence on crystal packing effects: in the first dimer of (1) the Te \cdots I contacts are 4.192 and 4.233 (1) Å [trans angles C—Te \cdots I 153.4 and $158.8(2)^{\circ}$], but in the second dimer of (1) and in (2) these contacts are substantially shorter, being 3.898 (2) and 3.872 (3) Å, respectively [trans angles 170.2 (2) and 175.6 (1)°]. The Te $\cdot \cdot$ -Br distance in (2) (corresponding to the dibromine-substituted minor component) is 3.676 (6) Å [*trans* angle C—Te···Br 177.7 (2)°]. The above distances may be compared with the typical van der Waals contacts of 3.91 and 4.04 Å for Te...Br and Te $\cdot \cdot \cdot$ I, respectively (Bondi, 1964).

Generally, secondary bonding interactions of this type are rather common for Te^{IV} complexes, especially for the aryl-substituted derivatives [in spite of the

widespread conception of a 'stereochemically active lone electron pair' in these compounds (Husebye, 1983)]. There are many examples, when some easily polarizable electronegative groups are situated at this 'empty' place (see, for example, Husebye, Kudis & Lindeman, 1995*a*), which would be impossible if the lone electron pair of the Te atom was really stereochemically active (occupies this 'empty' position). Apparently, in aryl-substituted Te^{IV} complexes the lone electron pair may be considerably inert (*e.g.* localized in the *s* orbital of Te) due to the strong negative σ -inductive effect of the aryl group.

Fig. 1. Perspective views of the three symmetrically independent molecules of (1) in a uniform orientation, showing the labelling of non-H atoms. The alternative position for the disordered ethyl group in the first molecule (top) is shown by dashed lines. The second molecule (middle) is shown as inverted (relative to Table 1) for comparison with the other molecules. Displacement ellipsoids are plotted at the 50% probability level.

Fig. 2. Perspective view of (2) showing the labelling of the non-H atoms. The less populated Br-atom positions and the corresponding bonds are depicted by dashed lines. Displacement ellipsoids are plotted at the 50% probability level.

The manner of valence coordination found in (1) and (2) is fairly new for Te^{IV} compounds: there is only one example of a complex with the same type and geometry of coordination, dibromo(O,O'-dimethyldi-thiophosphato-S,S')-*p*-methoxyphenyltellurium(IV), (3) (Chadha, Drake, McManus, Quinlan & Sarkar, 1987), but the dithiophosphate ligand seems to exert a weaker *trans* influence than the dithiocarbamate one. Thus, the Te—S distances in the complexes (1) [2.550–2.569 (2) Å] and (2) [2.523 and 2.535 (1) Å] are noticeably shorter than in (3) (2.632 and 2.728 Å), and Te—Br distances in (2) [2.962 (8) and 2.967 (8) Å] are much longer than in (3) (2.616 and 2.676 Å).

Moreover, in (1) and (2) the Te—S bonds are shorter than those of analoguous monohalogenobis-(dithiocarbamato) complexes that have pentagonal coordination in the equatorial plane, evidently as a result of two 'pure' S—Te—Hal *trans* interactions [in (1) and (2) the *trans* angles S—Te—I/Br are in the range 151–162°]. For example, in the structure of bis(diethyl-dithiocarbamato)(iodo)(phenyl)tellurium(IV), (4) (Husebye & Maartmann-Moe, 1994), the lengths of Te—S bonds opposite to the halogen atom are 2.629 (1)–2.661 (1) Å (*trans* angles S—Te—I 141.1–143.0°), and in bromobis(dimethyldithiocarbamato)(4-methoxyphenyl)tellurium(IV), (5) (Husebye, Kudis & Lindeman, 1995b), they are 2.623 (1) and 2.629 (1) Å (*trans* angle S—Te—Br 142.1°).

On the other hand, the Te—I distances in (1) and (2) (2.941-3.049 Å) are also shortened compared with those of (4) [3.100(1) and 3.151(1) Å]. This may be a result both of the smaller sterical overload of the octahedral complexes (1) and (2) and of the joint *trans* influence of the two thio ligands in the pentagonal bipyramidal complex (4).

The Te—I bonds in (1) and (2) also seem to be influenced by intermolecular interactions. While in the first (weakly bonded) dimer of (1) the Te—I bond lengths vary 'statistically' within the range 2.941 (1)– 2.952 (1) Å, in the second (more strongly bonded) dimer of (1) the bridging Te—I bond is 0.016(1) Å longer than the terminal one, and in the dimer of (2) this difference increases to 0.046(3) Å. However, the Te— Br distances are practically equal in (2) [2.962(8) and 2.967(8) Å], though in (3) the bridging Te—Br distance is markedly longer than the terminal one (2.676 and 2.616 Å, respectively), in good agreement with the shorter intermolecular Te…Br distance (3.810 Å, *trans*angle C—Te…Br 159.4°).

The influence of the secondary bonds on the length of the *trans*-disposed Te—C(Ar) bond is not so marked. In the three independent molecules of (1), the Te—Ph bond lengths are practically equal within experimental accuracy [2.137(6)-2.146(6) Å]; in (2), the Te—Ar bond is even slightly shorter [2.123(5) Å], apparently as a result of the of the electronegative *p*-methoxy-substituent.

The orientation of the benzene group relative to the equatorial plane of the Te atom is staggered in both structures: one of the o-C atoms is situated between two halogen ligands, and the other is between two S atoms

Fig. 3. Perspective view of the two symmetrically independent dimers of (1) in the crystal [situated in a general position with an approximate non-crystallographic centre of symmetry (top), and derived by a crystallographic centre of symmetry (bottom)]. Intermolecular Te...I contacts are shown by dashed (longer) or unbroken (shorter) lines.

Fig. 4. Perspective view of the dimer of (2) in the crystal. The less populated Br-atom positions and corresponding bonds are depicted by dashed lines.

(see Figs. 3 and 4, Tables 3 and 4). The only exception is the first symmetrically independent molecule of (1), in which the phenyl group is turned facially towards the dithiocarbamate ligand, and each of its o-C atoms is placed between S and I atoms. This is a good example of the effect of packing on the molecular conformation. In any case, both conformers seem to have a minimum of steric strain.

The *p*-methoxyphenyl ligand in (2) has the usual flattened π -conjugated structure: the torsion angle C—C— O—C is only 15.0 (9)°. A usual π -conjugated structure is also observed for the dithiocarbamate ligands: the $C(sp^2)$ —N bond distances are 1.29(1)–1.34(1) Å; the twist along this bond does not exceed $3.6(5)^\circ$; the configuration of the N atoms is planar within 0.016(8) Å [the only exception is the disordered ligand in the first symmetrically independent molecule of (1) in which the twist along the $C(sp^2)$ —N bond is 5–10(1)°]. In all cases, the ethyl groups of the dithiocarbamate ligands have an anti orientation.

Experimental

(1) was synthesized from Ph_2Te_2 by addition of elemental I_2 in chloroform solution, followed by treatment with an excess of NaS2CNEt2 in CH2Cl2. Red crystals formed upon addition of n-hexane/diisopropyl ether and were then recrystallized from a ethanol/dichloromethane (1:1) mixture. (2) was synthesized by reacting $(p-MeOC_6H_4)Te(S_2CNEt_2)_2I$, dissolved in CH₂Cl₂, with Br₂, dissolved in CCl₄ (molar ratio 2:1). Recrystallization from a combination of ethanol/dichloromethane/toluene (2:1:1 volume) vielded a mixture of yellow crystals of (p-MeOC₆H₄)Te(S₂CNEt₂)₂(Br_{0.4}/I_{0.6}) (Husebye, Kudis & Lindeman, 1995a) and red crystals of compound (2).

Compound (1)

Crystal data	
$[TeI_2(C_5H_{10}NS_2)(C_6H_5)]$	Mo $K\alpha$ radiation
M _r = 606.76	$\lambda = 0.71069$ Å

Triclinic

$$P\overline{1}$$

 $a = 9.126 (1) \text{ Å}$
 $b = 12.631 (1) \text{ Å}$
 $c = 24.532 (4) \text{ Å}$
 $\alpha = 97.32 (1)^{\circ}$
 $\beta = 99.59 (1)^{\circ}$
 $\gamma = 105.46 (1)^{\circ}$
 $V = 2643.0 (6) \text{ Å}^{3}$
 $Z = 6$
 $D_{x} = 2.287 \text{ Mg m}^{-3}$

Data collection

Enraf-Nonius CAD-4 diffractometer $\omega/1.3\theta$ scans Absorption correction: numerical (Gaussian method) $T_{\min} = 0.328, T_{\max} =$ 0.560 15345 measured reflections 15345 independent

reflections

Refinement

Refinement on F^2	$(\Delta/\sigma)_{\rm max} = 0.039$
$R[F^2 > 2\sigma(F^2)] = 0.0465$	$\Delta \rho_{\rm max} = 2.397 {\rm e} {\rm \AA}^{-3}$
$wR(F^2) = 0.1138$	(adjacent to Te and I)
S = 1.221	$\Delta \rho_{\rm min} = -1.538 {\rm e}{\rm \AA}^{-3}$
15321 reflections	(adjacent to Te and I)
465 parameters	Extinction correction: none
H atoms: riding and rotating	Atomic scattering factors
model with fixed U_{iso}	from International Tables
$w = 1/[\sigma^2(F_o^2) + (0.0468P)^2]$	for Crystallography (1992,
+ 8.0474 <i>P</i>]	Vol. C, Tables 4.2.6.8 and
where $P = (F_o^2 + 2F_c^2)/3$	6.1.1.4)

Table 1. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ($Å^2$) for (1)

U_{iso} for C4, C4', C5, C5'; $U_{eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^*$	i *a i.aj f	for others
---	--------------------	------------

			11 111
x	у	Z	U _{eq} /U _{iso}
0.73354 (5)	0.02302 (3)	0.16876 (2)	0.04526 (10)
0.92681 (7)	0.13829 (4)	0.27996 (2)	0.06904 (15)
0.41210 (6)	0.02446 (5)	0.16935 (3)	0.0782 (2)
0.9671 (2)	-0.0167 (2)	0.13380 (9)	0.0659 (5)
0.6416 (2)	-0.0939 (2)	0.06922 (9)	0.0681 (5)
0.8650 (10)	-0.1736 (7)	0.0405 (3)	0.089 (2)
0.8321 (9)	-0.1015 (7)	0.0779 (3)	0.064 (2)
0.7529 (18)	-0.2398 (12)	-0.0098 (6)	0.138 (6)
0.662 (2)	-0.3455 (15)	0.0023 (7)	0.211 (12)
1.050 (2)	-0.1625 (17)	0.0515 (8)	0.070 (5)
0.999 (2)	-0.2039 (16)	0.0450 (8)	0.064 (4)
1.145 (3)	-0.0831 (19)	0.0221 (10)	0.089 (6)
1.099 (3)	-0.1390 (18)	0.0122 (9)	0.080 (5)
0.7774 (8)	0.1749 (5)	0.1362 (3)	0.0497 (14)
0.6663 (9)	0.1911 (7)	0.0952 (4)	0.068 (2)
0.6989 (11)	0.2880 (9)	0.0729 (4)	0.091 (3)
0.8372 (13)	0.3663 (8)	0.0909 (4)	0.092 (3)
0.9521 (13)	0.3489 (8)	0.1309 (4)	0.102 (4)
0.9207 (10)	0.2528 (7)	0.1531 (3)	0.081 (3)
0.42807 (5)	-0.30588(3)	0.17498 (2)	0.04752 (10)
0.21936 (9)	-0.41632(5)	0.06601 (2)	0.0835 (2)
0.75325 (7)	-0.30277 (6)	0.17620 (3)	0.0887 (2)
0.1961 (2)	-0.26413 (15)	0.20876 (8)	0.0555 (4)
0.5170 (2)	-0.19752 (15)	0.27613 (8)	0.0572 (4)
	x 0.73354 (5) 0.92681 (7) 0.41210 (6) 0.9671 (2) 0.6416 (2) 0.8650 (10) 0.8321 (9) 0.7529 (18) 0.662 (2) 1.050 (2) 0.999 (2) 1.145 (3) 1.099 (3) 0.7774 (8) 0.6683 (9) 0.6989 (11) 0.8372 (13) 0.9521 (13) 0.9521 (13) 0.9521 (13) 0.9207 (10) 0.42807 (5) 0.21936 (9) 0.75325 (7) 0.1961 (2) 0.5170 (2)	x y 0.73354 (5) 0.02302 (3) 0.92681 (7) 0.13829 (4) 0.41210 (6) 0.02446 (5) 0.9671 (2) -0.0167 (2) 0.6416 (2) -0.0939 (2) 0.6450 (10) -0.1736 (7) 0.8650 (10) -0.1736 (7) 0.8450 (10) -0.1736 (7) 0.7529 (18) -0.2398 (12) 0.662 (2) -0.3455 (15) 1.050 (2) -0.1625 (17) 0.999 (2) -0.2039 (16) 1.145 (3) -0.0831 (19) 1.099 (3) -0.1730 (18) 0.7774 (8) 0.1749 (5) 0.6663 (9) 0.1911 (7) 0.6989 (11) 0.2880 (9) 0.8372 (13) 0.3663 (8) 0.9207 (10) 0.2528 (7) 0.42807 (5) -0.30588 (3) 0.21936 (9) -0.41632 (5) 0.75325 (7) -0.30277 (6) 0.961 (2) -0.26413 (15)	xyz 0.73354 (5) 0.02302 (3) 0.16876 (2) 0.92681 (7) 0.13829 (4) 0.27996 (2) 0.41210 (6) 0.02446 (5) 0.16935 (3) 0.9671 (2) -0.0167 (2) 0.13380 (9) 0.6416 (2) -0.0939 (2) 0.06922 (9) 0.8650 (10) -0.1736 (7) 0.0405 (3) 0.8321 (9) -0.1015 (7) 0.0779 (3) 0.7529 (18) -0.2398 (12) -0.0098 (6) 0.662 (2) -0.3455 (15) 0.0023 (7) 1.050 (2) -0.1625 (17) 0.0515 (8) 0.999 (2) -0.2039 (16) 0.0450 (8) 1.145 (3) -0.0831 (19) 0.0221 (10) 1.099 (3) -0.1799 (18) 0.0122 (9) 0.7774 (8) 0.1749 (5) 0.1362 (3) 0.6663 (9) 0.1911 (7) 0.0952 (4) 0.6989 (11) 0.2880 (9) 0.0729 (4) 0.8372 (13) 0.3663 (8) 0.1309 (4) 0.9207 (10) 0.2528 (7) 0.1531 (3) 0.42807 (5) -0.30278 (3) 0.17498 (2) 0.21936 (9) -0.41632 (5) 0.06601 (2) 0.75325 (7) -0.30277 (6) 0.17620 (3) 0.1961 (2) -0.26413 (15) 0.20876 (8) 0.5170 (2) -0.19752 (15) 0.27613 (8)

Cell parameters from 24 reflections $\theta = 10 - 11^{\circ}$ $\mu = 5.412 \text{ mm}^{-1}$

 $0.52 \times 0.22 \times 0.13 \text{ mm}$

9160 observed reflections

 $[I > 2\sigma(I)]$

 $\theta_{\rm max} = 29.96^{\circ}$

 $k = -17 \rightarrow 17$

 $l = -34 \rightarrow 33$

3 standard reflections

frequency: 120 min

intensity decay: 2.8%

 $h = 0 \rightarrow 12$

T = 293 (2) KPrism

Red

$[TeI_2(C_5H_{10}NS_2)(C_6H_5)]$ AND $[TeBr_{0.8}I_{1.2}(C_5H_{10}NS_2)(C_7H_7O)]$

N14	0 2990 (7)	-0 1071 (5	0.3013 (3)	0.0551 (13)	12Te1C6C7	-40.8 (6)
CIA	0.3334(7)	-0 1804 (5	0.2664(3)	0.0486(14)	II—Te1—C6—C7	-148.7(6)
C74	0.5554(7) 0.4103(10)	-0.0396 (7	0.2504(3)	0.071(2)	Te1I2Te1AI2A	0.90 (2)
C2A	0.4105(10)	-0.0390 (7	0.3319(5)	0.005 (3)	12_Tel 4_124Tel	-0.63(2)
CAA	0.4900 (12)	0.0710(7	0.3419(3)	0.070 (3)	12 - 101 - 121 - 101	0.03(2)
C4A	0.1450(10)	-0.08/2 (/	0.2912(4)	0.070(2)	12 - 101 - 12A - 101A	0.92(2)
CSA	0.0377(11)	-0.1521 (9	0.3224(3)	0.090(3)	S_{2A} T_{1A} S_{1A} T_{1A} S_{1A} T_{1A}	9.0 (2)
C6A	0.3861 (8)	-0.4658 (5) 0.2005 (3)	0.0492 (14)		-9.0 (2)
C/A	0.3143 (8)	-0.4849 (6) 0.2450 (3)	0.054 (2)	Iela-SZA-CIA-SIA	14.2 (3)
C8A	0.2844 (9)	-0.5911 (7) 0.2587 (4)	0.069 (2)	Iela-SIA-CIA-SZA	-14.2 (3)
C9A	0.3306 (11)	-0.6711 (7) 0.2312 (5)	0.083 (3)	SIA—IeIA—C6A—CIIA	150.9 (6)
C10A	0.4033 (13)	-0.6510 (7) 0.1876 (5)	0.087 (3)	S2A—Te1A—C6A—C11A	-138.4 (6)
C11A	0.4314 (11)	-0.5472 (6) 0.1709 (4)	0.074 (2)	I1A—Te1A—C6A—C11A	62.5 (6)
Te1 <i>B</i>	0.57840 (5)	0.64404 (3) 0.45639 (2)	0.05111 (11)	I2A—Te1A—C6A—C11A	-49.9 (6)
I1 <i>B</i>	0.28098 (6)	0.68444 (4) 0.40896 (3)	0.0754 (2)	S1A—Te1A—C6A—C7A	-28.5 (5)
I2B	0.64634 (9)	0.67357 (5) 0.58167 (2)	0.0821 (2)	S2A—Te1A—C6A—C7A	42.3 (5)
\$1 <i>B</i>	0.6218 (2)	0.5893 (2) 0.35799 (8)	0.0638 (5)	11A—Te1A—C6A—C7A	-116.8 (5)
S2B	0.8263 (3)	0.5849 (2) 0.46319 (8)	0.0654 (5)	I2A—Te1A—C6A—C7A	130.7 (5)
N1B	0.8203 (7)	0.4686 (5	0.3648 (2)	0.0548 (13)	\$2B—Te1B—\$1B—C1B	10.1 (2)
CIB	0 7658 (8)	0.5394 (5	0.3910(3)	0.0521 (15)	S1B-Te1B-S2B-C1B	-10.1(2)
CTR	0.9376 (8)	0.4215 (6	0.3932(3)	0.057(2)	C4B = N1B = C1B = S1B	0.6 (11)
C3B	0.8609 (10)	0.3174 (6	0.1332(3)	0.027(2)	C2B—N1B— $C1B$ — $S2B$	-0.5(10)
CAR	0.7658 (11)	0.0174 (0	0.1130(1)	0.072(2)	Te1R S1R C1R S2R	-157(4)
C5P	0.7658 (11)	0.4245 (0	(3) (3)	0.077(2)	Te1R S2R (1R S1R)	15.7 (4)
CSD	0.6073 (19)	0.4005 (1	(3) = 0.2704(3)	0.157(5)	$S1P T_{0}1P C6P C11P$	-221(7)
	0.0907(8)	0.0100 (3) 0.4022 (3)	0.0314(13)	S1D - 101D - C0D - C11D	-22.1 (7)
C/B	0.0405 (10)	0.8945 (0) 0.4909 (3)	0.004 (2)		48.0 (7)
C8B	0.7100 (12)	1.00/4 (6) 0.4998 (4)	0.075 (2)		-112.9(7)
C9B	0.8148 (12)	1.0450 (7) 0.4683 (4)	0.080 (2)	12B— $1e1B$ — $C6B$ — $C11B$	133.7 (7)
C10B	0.8574 (12)	0.9698 (8) 0.4334 (5)	0.092 (3)	SIB - IeIB - C6B - C/B	153.4 (6)
C11B	0.7949 (10)	0.8555 (7) 0.4301 (4)	0.075 (2)	S2B—Te1B—C6B—C7B	-136.0 (6)
		+ 0			I1B—Te1B—C6B—C7B	62.5 (6)
		† Occupano	cy = 0.5.		I2B—Te1B—C6B—C7B	-50.9 (6)
			. 9		Symmetry code: (i)	1 - r - 1 - v - 7
Table 2	2. Selected	l geometric	parameters (A,	°) for (1)	ognaneug couer (i)	
Tal C6		2 1 27 (6)	Tal 4 11 4	2 9422 (15)	Compound (2)	
		2.137 (0)		2.9422 (13)	Compound (2)	
1e1		2.300 (2)	Iela-12A	2.9324 (9)	Crystal data	
lei—Si		2.369 (2)	SIA-CIA	1.755 (7)		
Te1—12		2.9408 (9)	S2A-CIA	1./28 (/)	$[\text{TeBr}_{0.8}I_{1.2}(\text{C}_5\text{H}_{10}\text{NS}_2)]$ -	Mo $K\alpha$ radiation
Tel—Il		2.9477 (14)	Te1 <i>B</i> —C6 <i>B</i>	2.144 (7)	(C_7H_7O)]	$\lambda = 0.71069 \text{ Å}$
Te1—I2A		4.1922 (13)	Te1 <i>B</i> —S1 <i>B</i>	2.550 (2)	M = 500.10	Cell parameters from 24
I2—Te1A		4.2326 (12)	Te1 <i>B</i> —S2 <i>B</i>	2.552 (2)	$m_r = 333.13$	Cell parameters nom 24
S1—C1		1.704 (8)	Te1 <i>B</i> —I1 <i>B</i>	2.9697 (11)	Triclinic	reflections
\$2—C1		1.746 (8)	Te1B—I2B	2.9864 (10)	PĪ	$\theta = 12.6 - 14.8^{\circ}$
Te1A-C6A		2.146 (6)	$Te1B - I2B^i$	3.898 (2)	a = 9.9482 (12) Å	$\mu = 5.386 \text{ mm}^{-1}$
Te1A-S1A		2.553 (2)	S1B—C1B	1.731 (7)	L = 0.0400 (12) R	$\mu = 5.500 \text{ mm}$
Te1A-S2A		2.561 (2)	S2B—C1B	1.736 (7)	D = 10.428(3) Å	I = 295 (2) K
C6 Tal	6 2	014(2)	S14 To14 124	150.04 (5)	c = 11.004 (2) Å	Flat prism
	52	91.4 (2)	SIA	139.04 (3)	$\alpha = 66.95 (2)^{\circ}$	$1.04 \times 0.34 \times 0.14$ mm
	51	89.0 (2)	SZA 101A12A	88.30 (0)	$a = 65.034 (11)^{\circ}$	Pod
52—1e1—3	51	70.48 (7)	$\Pi A - \Pi I A - \Pi Z A$	112.43 (4)	p = 03.934(11)	Keu
C6—lel—	12	90.4 (2)	CoA—lelA—l2	158.8 (2)	$\gamma = 75.94 (2)^{\circ}$	
S2—1e1—1	2	89.50 (6)	TelA—I2A—Tel	/3.31(3)	V = 954.4 (4) Å ³	
S1-Te1-	12	159.97 (5)	CIA—SIA—IelA	85.0 (2)	7 - 2	
C6—Te1—	I1	91.8 (2)	C1A—S2A—Te1A	84.9 (2)	L = 2	
S2Te1l	[1	162.31 (5)	C6B—Te1B—S1B	94.4 (2)	$D_x = 2.085 \text{ Mg m}^{-3}$	
S1—Te1—	[1	92.16 (6)	C6B—Te1B—S2B	95.7 (2)		
12Te1I	1	107.86 (4)	S1B—Te1B—S2B	70.33 (7)	Data collection	
C6-Te1	12A	154.3 (2)	C6B—Te1B—I1B	88.1 (2)		
Te1-I2-7	Te1A	72.75 (3)	S1B-Te1B-I1B	91.02 (5)	Enraf–Nonius CAD-4	4485 observed reflections
C1-S1-T	`el	85.3 (3)	S2B—Te1B—I1B	161.16(5)	diffractometer	$[I > 2\sigma(I)]$
C1—S2—T	`el	84.5 (3)	C6B-Te1B-12B	89.8 (2)		$A = -20.06^{\circ}$
C6A—Te1A	-S1A	93.9 (2)	S1B—Te1B—I2B	155.41 (5)	$\omega/20$ scalls	$v_{\rm max} = 29.90$
C6A-Te1A	-S2A	93.6 (2)	S2B—Te1B—I2B	85.15 (5)	Absorption correction:	$h = 0 \rightarrow 13$
SIA—TelA	—S2A	70.62 (6)	I1B—Te1B—I2B	113.36(4)	numerical (Gaussian	$k = -13 \rightarrow 14$
C6A_Te1A		88 6 (2)	C6B_Te1B_12B ⁱ	170.2 (2)	method)	$l = -13 \rightarrow 15$
S14_Te14	I1A	88 40 (5)	Te1B-I2B-Te1B ⁱ	80.06 (4)		$\frac{1}{2} + \frac{1}{2} + \frac{1}$
\$24Tel 4	_114	159.01 (5)	C1B— $S1B$ — $Te1B$	85.6 (2)	$I_{\min} = 0.151, I_{\max} =$	5 standard renections
C64-Tel4	I2A	891(2)	C1B $S2B$ $Te1B$	85.4 (2)	0.495	frequency: 120 min
					5544 measured reflections	intensity decay: 4.4%
	12A—Te1—	12—TelA	-0.6	4 (2)	5544 independent reflections	
	S2-Te1-S	SI-CI	-7.1	(3)	5544 independent reflections	
	S1-Te1-S	2-C1	7.0	(3)		
	Te1-S1-0	1—S2	11.3	(5)	Refinement	
	Te1—S2—C	21— S 1	-11.3	(5)		$(\Lambda / -)$ 0.410
	S2-Te1-C	C6—C 11	-126.3	(7)	Kennement on F	$(\Delta/\sigma)_{\rm max} = 0.410$
	S1—Te1—C	C6—C11	-55.8	(7)	$R[F^2 > 2\sigma(F^2)] = 0.0427$	$\Delta \rho_{\rm max} = 1.722 {\rm e} {\rm \AA}^{-3}$
	12—Te 1—C	6—C11	144.2	(7)	$wR(F^2) = 0.1245$	(adjacent to Te and I/Pr)
	II—Te1—C	6—C11	36.3	(7)	S = 1.109	A = 1002 $g = 3$
	S2Te1C	C6C7	48.7	(6)	S = 1.108	$\Delta \rho_{\rm min} = -1.903 {\rm e A}^{-3}$
	S1-Te1-C	C6C7	119.2	(6)	5521 reflections	(adjacent to Te and I/Br)

1874

H atoms: riding and rotating model with U_{iso} refined for groups $w = 1/[\sigma^2(F_o^2) + (0.0791P)^2 + 1.5737P]$ where $P = (F_o^2 + 2F_c^2)/3$ Extinction correction: none Atomic scattering factors from *International Tables* for Crystallography (1992, Vol. C, Tables 4.2.6.8 and 6.1.1.4)

Table 3. Fractional atomic coordinates and equivalent isotropic displacement parameters ($Å^2$) for (2)

$$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j$$

	x	у	Ζ	U_{eq}
Tel	0.04660 (4)	0.03535 (3)	0.76279 (3)	0.04207 (10)
I1	0.2362 (3)	0.1281 (3)	0.8664 (3)	0.0528 (5)
Brl	0.2023 (7)	0.1392 (7)	0.8806 (7)	0.0484 (10)
12	-0.2112 (4)	0.2143 (3)	0.6845 (4)	0.0488 (3)
Br2	-0.2032 (10)	0.2339 (7)	0.6974 (9)	0.0464 (8)
S1	0.2269 (2)	-0.18068(12)	0.7989 (2)	0.0497 (3)
S2	-0.02116 (15)	-0.14714 (13)	0.70432 (15)	0.0486 (3)
01	0.4367 (5)	0.3439 (5)	0.1442 (4)	0.0676 (11)
N1	0.1525 (5)	-0.3857 (4)	0.7581 (4)	0.0426 (8)
C1	0.1226 (5)	-0.2552 (5)	0.7561 (5)	0.0399 (8)
C2	0.0623 (6)	-0.4507 (5)	0.7243 (6)	0.0492 (11)
C3	-0.0651 (7)	-0.5157 (7)	0.8526 (7)	0.0620 (14)
C4	0.2794 (6)	0.4749 (5)	0.7929 (6)	0.0524 (11)
C5	0.4078 (8)	-0.4848 (10)	0.6640 (9)	0.083 (2)
C6	0.1879 (6)	0.1311 (5)	0.5539 (5)	0.0435 (9)
C7	0.1887 (6)	0.2761 (5)	0.5045 (5)	0.0469 (10)
C8	0.2744 (6)	0.3428 (5)	0.3689 (6)	0.0527 (11)
C9	0.3605 (6)	0.2656 (6)	0.2786 (6)	0.0506 (11)
C10	0.3622 (6)	0.1227 (6)	0.3279 (6)	0.0516 (11)
C11	0.2754 (6)	0.0544 (5)	0.4655 (6)	0.0487 (10)
C12	0.4960 (8)	0.2801 (9)	0.0375 (7)	0.077 (2)

Table 4. Selected geometric parameters (Å, °) for (2)

	-	-			
Te1—C6	2.123 (5)	Te1I1	3.049 (3)		
Te1—S1	2.5233 (15)	Te1—Br1 ⁱ	3.676 (6)		
Tel—S2	2.5349 (14)	Te1—I1 ⁱ	3.872 (3)		
Tel—Brl	2.967 (8)	S1-C1	1.726 (4)		
Te1—Br2	2.962 (8)	S2C1	1.737 (5)		
Te1—I2	3.003 (4)				
C6-Te1-S1	92.63 (14)	S2-Te1-I2	84.78 (5)		
C6-Te1-S2	94.87 (13)	C6—Te1—I1	87.84 (14)		
S1Te1S2	71.27 (4)	S1Te1I1	80.04 (7)		
C6-Te1-Br1	91.4 (2)	S2Te1I1	151.26 (7)		
S1—Te1—Br1	84.62 (13)	I2—Te1—I1	123.92 (7)		
S2—Te1—Br1	155.30 (13)	C6—Te1—Br1'	177.7 (2)		
C6—Te1—Br2	89.0 (2)	C6—Te1—I1 ¹	175.64 (14)		
S1—Te1—Br2	162.24 (9)	Te1—I1—Te1	84.52 (7)		
S2-Te1-Br2	90.98 (9)	Te1—Br1—Te1 ⁱ	89.2 (2)		
Br1-Te1-Br2	113.03 (15)	C1S1Te1	86.2 (2)		
C6-Te1-I2	88.7 (2)	C1S2Te1	85.6 (2)		
S1—Te1—I2	156.04 (5)	S1—C1—S2	116.6 (3)		
S2-Te1-S1-C1	-3.0 (2)	Br2Te1C6C11	-126.5 (4)		
S1-Te1-S2-C1	3.0(2)	I2-Te1-C6-C11	- 120.2 (4)		
C4-N1-C1-S1	-1.9(7)	II—Te1—C6—C11	115.8 (4)		
C2-N1-C1-S2	-3.3 (7)	S1-Te1-C6-C7	- 145.8 (4)		
Te1-S1-C1-S2	4.6 (3)	S2—Te1—C6—C7	142.8 (4)		
Te1-S2-C1-S1	-4.6 (3)	Br1-Te1-C6-C7	-61.1 (4)		
S1—Te1—C6—C11	35.9 (4)	Br2Te1C6C7	51.9 (4)		
S2-Te1-C6-C11	- 35.6 (4)	I2-Te1-C6-C7	58.2 (4)		
Brl-Tel-C6-C11	120.5 (4)	I1Te1C6C7	-65.8 (4)		
Symmetry code: (i) $-x, -y, 2-z$.					

Both ethyl groups in one of the three independent molecules of (1) were disordered. For one of the ethyl groups the disorder was successfully resolved [C(4)/C(4')] and C(5)/C(5') were refined isotropically with occupancy factors of 0.5 for each position], but for the other, C(2), C(3), it failed (anisotropic refinement gave very large amplitudes of the thermal motion of the atoms). An absorption correction For both compounds, program(s) used to solve structures: *SHELXS86* (Sheldrick, 1985); program(s) used to refine structures: *SHELXL93* (Sheldrick, 1993).

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: FG1060). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Bondi, A. (1964). J. Phys. Chem. 68, 441-451.
- Chadha, R. K., Drake, J. E., McManus, N. T., Quinlan, B. A. & Sarkar, A. B. (1987). Organometallics, 6, 813-819.
- Husebye, S. (1983). Proceedings of the 4th International Conference on the Organic Chemistry of Selenium and Tellurium, Univ. of Aston, England, edited by F. J. Berry & W. R. McWhinnie, pp. 298–378.
- Husebye, S., Kudis, S. & Lindeman S. V. (1995a). Acta Cryst. C51. In the press.
- Husebye, S., Kudis, S. & Lindeman S. V. (1995b). Acta Cryst. C51. In the press.
- Husebye, S. & Maartmann-Moe, K. (1994). European Crystallography Meeting, Dresden, Germany. Book of Abstracts 15, edited by P. Paufler & M. Schenk, p. 236.

Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. Univ. of Göttingen, Germany.

Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. Univ. of Göttingen, Germany.

Acta Cryst. (1995). C51, 1875-1878

N-p-Tolylvanillaldimine, C₁₅H₁₅NO₂

BRANKO KAITNER* AND GORDANA PAVLOVIĆ

Chemistry Department, Laboratory of General and Inorganic Chemistry, Faculty of Science, University of Zagreb, Ul. Kralja Zvonimira 8, 41000 Zagreb, Croatia

(Received 6 December 1994; accepted 24 February 1995)

Abstract

The title compound, 2-methoxy-4-(p-tolyliminomethyl)phenol, contains two phenyl rings bridged by a C=N imino moiety, the planes of which are inclined at an